000 01796nam a2200385 i 4500
001 OTLid0000970
003 MnU
005 20241120064024.0
006 m o d s
007 cr
008 210214s2020 mnu o 0 0 eng d
040 _aMnU
_beng
_cMnU
050 4 _aQA1
050 4 _aQA37.3
050 4 _aQA299.6-433
245 0 0 _aMeasure, Integration & Real Analysis
_cSheldon Axler
264 2 _aMinneapolis, MN
_bOpen Textbook Library
264 1 _aSan Francisco, CA
_bSheldon Axler
_c2021.
264 4 _c©2020.
300 _a1 online resource
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
490 0 _aOpen textbook library.
505 0 _a1 Riemann Integration -- 2 Measures -- 3 Integration -- 4 Differentiation -- 5 Product Measures -- 6 Banach Spaces -- 7 Lp Spaces -- 8 Hilbert Spaces -- 9 Real and Complex Measures -- 10 Linear Maps on Hilbert Spaces -- 11 Fourier Analysis -- 12 Probability Measures
520 0 _aThis book seeks to provide students with a deep understanding of the definitions, examples, theorems, and proofs related to measure, integration, and real analysis. The content and level of this book fit well with the first-year graduate course on these topics at most American universities. This textbook features a reader-friendly style and format that will appeal to today's students.
542 1 _fAttribution-NonCommercial
546 _aIn English.
588 0 _aDescription based on print resource
650 0 _aMathematics
_vTextbooks
650 0 _aProof
_vTextbooks
700 1 _aAxler, Sheldon
_eauthor
710 2 _aOpen Textbook Library
_edistributor
856 4 0 _uhttps://open.umn.edu/opentextbooks/textbooks/970
_zAccess online version
999 _c39168
_d39168